Search results for "Frequency generation"

showing 10 items of 30 documents

Surface charges at the CaF2/water interface allow very fast intermolecular vibrational-energy transfer

2020

Abstract We investigate the dynamics of water in contact with solid calcium fluoride, where at low pH, localized charges can develop upon fluorite dissolution. We use 2D surface‐specific vibrational spectroscopy to quantify the heterogeneity of the interfacial water (D2O) molecules and provide information about the sub‐picosecond vibrational‐energy‐relaxation dynamics at the buried solid/liquid interface. We find that strongly H‐bonded OD groups, with a vibrational frequency below 2500 cm−1, display very rapid spectral diffusion and vibrational relaxation; for weakly H‐bonded OD groups, above 2500 cm−1, the dynamics slows down substantially. Atomistic simulations based on electronic‐structu…

540 Chemistry and allied sciencesMaterials science530 Physics2D sum-frequency generation010402 general chemistry01 natural sciencesCatalysisVibrational energy relaxationSurface chargeDiffusion (business)DissolutionResearch Articlesenergy transfer010405 organic chemistryIntermolecular forceGeneral ChemistryInterfacial Chemistryab-initio molecular dynamics530 Physik0104 chemical sciencesDipoleSolvation shellChemical physicsMolecular vibration540 Chemiesolid/liquid interfacesResearch Article
researchProduct

Microscopic Insights into the Fluorite/Water Interfaces from Vibrational Sum Frequency Generation Spectroscopy

2016

Water/mineral interfaces are central to a wide range of environmental and technological processes. In this report we provide a quantitative, molecular-level understanding of the CaF2/water interface using Density Functional Theory-based molecular dynamics simulations. In particular through the comparison of calculated Vibrational Sum Frequency Generation spectra to the experimental ones, we give a structural characterisation of the interface at different pH. At low pH, the surface is positively charged, causing a substantial degree of water ordering. Our results suggest that the surface charge originates from the dissolution of fluoride ions of the topmost layer, rather than from proton ads…

AdsorptionProtonChemistryHydrogen bondChemical physicsAnalytical chemistryDensity functional theorySurface chargeDissolutionIonSum frequency generation spectroscopy
researchProduct

All-Optical frequency Shifter in a Periodically Poled Lithium Tantalate Waveguide

2011

A frequency shifting device is fabricated and tested in a congruent Lithium Tantalate waveguide. Periodic poling for quasi-phase-matching and channels for operation in the near-infrared C-band were obtained, demonstrating a two-stage parametric conversion.

All-optical wavelength conversion second-harmonic generation difference-frequency generation ferroelectric crystals periodic poling Lithium Tantalate Lithium Niobate.Settore ING-INF/02 - Campi ElettromagneticiSettore ING-INF/01 - Elettronica
researchProduct

Control of signal coherence in parametric frequency mixing with incoherent pumps: Narrowband mid-infrared light generation by downconversion of broad…

2012

International audience; We study, with numerical simulations using the generalized nonlinear envelope equation, the processes of optical parametric and difference- and sum-frequency generation (SFG) with incoherent pumps in optical media with both quadratic and third-order nonlinearity, such as periodically poled lithium niobate. With ultrabroadband amplified spontaneous emission pumps or continua (spectral widths > 10 THz), group-velocity matching of a near-IR pump and a short-wavelength mid-IR (MIR) idler in optical parametric generation may lead to more than 15-fold relative spectral narrowing of the generated MIR signal. Moreover, the SFG process may also lead to 6-fold signal coherence…

Amplified spontaneous emissionLithium niobatePhysics::Optics01 natural sciences010309 opticsMEDIAchemistry.chemical_compoundOpticsNarrowband0103 physical sciencesSpectral width010306 general physicsPhysicsSum-frequency generationCRYSTALAcoustooptical devices; interferometry; mixer circuitsbusiness.industryQuantum noiseStatistical and Nonlinear PhysicsBEAMSOptical parametric amplifierAtomic and Molecular Physics and OpticsOUTPUTCONTINUUMchemistryOSCILLATORSbusinessPhotonic-crystal fiber
researchProduct

Oxide/water interfaces: how the surface chemistry modifies interfacial water properties

2012

The organization of water at the interface with silica and alumina oxides is analysed using density functional theory-based molecular dynamics simulation (DFT-MD). The interfacial hydrogen bonding is investigated in detail and related to the chemistry of the oxide surfaces by computing the surface charge density and acidity. We find that water molecules hydrogen-bonded to the surface have different orientations depending on the strength of the hydrogen bonds and use this observation to explain the features in the surface vibrational spectra measured by sum frequency generation spectroscopy. In particular, 'ice-like' and 'liquid-like' features in these spectra are interpreted as the result o…

ChemistryHydrogen bondInorganic chemistryOxideCharge densityCondensed Matter PhysicsSpectral lineMolecular dynamicschemistry.chemical_compoundChemical physicsMoleculeGeneral Materials ScienceDensity functional theoryPhysics::Chemical PhysicsSum frequency generation spectroscopyJournal of Physics: Condensed Matter
researchProduct

Refined Sellmeier equations from phase-matching measurements over the complete transparency range of KTiOAsO4, RbTiOAsO4 and CsTiOAsO4

2000

Sum- and difference- frequency generation phasematching properties are measured in spheres of KTiOAsO4, RbTiOAsO4 and CsTiOAsO4 for Sellmeier equations refinement over their complete transparency range.

Frequency generationOpticsMaterials sciencebusiness.industryRange (statistics)SPHERESTransparency (data compression)Nonlinear optical crystalbusinessRefractive indexPhase matchingAdvanced Solid State Lasers
researchProduct

Membrane Structure of Aquaporin Observed with Combined Experimental and Theoretical Sum Frequency Generation Spectroscopy

2021

High-resolution structural information on membrane proteins is essential for understanding cell biology and for the structure-based design of new medical drugs and drug delivery strategies. X-ray diffraction (XRD) can provide angstrom-level information about the structure of membrane proteins, yet for XRD experiments, proteins are removed from their native membrane environment, chemically stabilized, and crystallized, all of which can compromise the conformation. Here, we describe how a combination of surface-sensitive vibrational spectroscopy and molecular dynamics simulations can account for the native membrane environment. We observe the structure of a glycerol facilitator channel (GlpF)…

GlycerolInfrared spectroscopyAquaporinPROTEINAquaporinsVIBRATIONAL SPECTROSCOPYMolecular dynamicsCHANNELElectrochemistryGeneral Materials SciencePEPTIDESpectroscopyCRYSTALChemistryEscherichia coli ProteinsSpectrum AnalysisMembrane structureWaterSurfaces and InterfacesCondensed Matter PhysicsBILAYERGLYCEROLINTERFACEMembraneMembrane proteinMOLECULAR-DYNAMICSBiophysicsMembrane channelORIENTATIONSum frequency generation spectroscopy
researchProduct

Vibrational Sum Frequency Generation Spectroscopy of the Water Liquid–Vapor Interface from Density Functional Theory-Based Molecular Dynamics Simulat…

2013

International audience; The vibrational sum frequency generation (VSFG) spectrum of the water liquid-vapor (LV) interface is calculated using density functional theory-based molecular dynamics simulations. The real and imaginary parts of the spectrum are in good agreement with the experimental data, and we provide an assignment of the SFG bands according to the dipole orientation of the interfacial water molecules. We use an instantaneous definition of the surface, which is more adapted to the study of interfacial phenomena than the Gibbs dividing surface. By calculating the vibrational (infrared, Raman) properties for interfaces of varying thickness, we show that the bulk spectra signature…

InfraredBulk spectra02 engineering and technologyMolecular dynamicsVibrational sum-frequency generations010402 general chemistry01 natural sciencesMolecular physicsSpectral lineInterfacial phenomenaLiquid-vapor interfaceMolecular dynamicssymbols.namesakeDipole orientationComputational chemistryGeneral Materials SciencePhysical and Theoretical ChemistryDividing surfacesDensity functionalsSum-frequency generationMolecular dynamics simulationsChemistryInterfacial water moleculesThin layers021001 nanoscience & nanotechnologyLiquid-vapor0104 chemical sciencesDipoleImaginary partsDensity functional theoryVaporssymbolsDensity functional theory[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]0210 nano-technologyRaman spectroscopyVarying thicknessSum frequency generation spectroscopyThe Journal of Physical Chemistry Letters
researchProduct

Surface-Specific Spectroscopy of Water at a Potentiostatically Controlled Supported Graphene Monolayer

2019

Knowledge of the structure of interfacial water molecules at electrified solid materials is the first step toward a better understanding of important processes at such surfaces, in, e.g., electrochemistry, atmospheric chemistry, and membrane biophysics. As graphene is an interesting material with multiple potential applications such as in transistors or sensors, we specifically investigate the graphene–water interface. We use sum-frequency generation spectroscopy to investigate the pH- and potential-dependence of the interfacial water structure in contact with a chemical vapor deposited (CVD) grown graphene surface. Our results show that the SFG signal from the interfacial water molecules a…

Materials science02 engineering and technologySubstrate (electronics)010402 general chemistryElectrochemistry01 natural sciencesArticlelaw.inventionMembrane biophysicslawSum-frequency generation spectroscopyMoleculePhysical and Theoretical ChemistrySpectroscopyWater interfaceInterfacial water structureGrapheneGraphene layersInterfacial water molecules021001 nanoscience & nanotechnologyChemical vapor deposited3. Good health0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergyChemical engineeringAtmospheric chemistry0210 nano-technologyMembrane biophysicsLayer (electronics)Potential dependenceThe Journal of Physical Chemistry. C, Nanomaterials and Interfaces
researchProduct

Liquid–solid interfaces: structure and dynamics from spectroscopy and simulations

2014

Liquid–solid interfaces play an important role in a number of phenomena encountered in biological, chemical and physical processes. Surface-induced changes of the material properties are not only important for the solid support but also for the liquid itself. In particular, it is now well established that water at the interface is substantially different from bulk water, even in the proximity of apparently inert surfaces such as a simple metal. The complex chemistry at liquid–solid interfaces is typically fundamental to heterogeneous catalysis and electrochemistry, and has become especially topical in connection with the search for new materials for energy production. A quite remarkable exa…

Materials scienceAbsorption spectroscopySurface PropertiesStructure (category theory)Infrared spectroscopy02 engineering and technologyLiquid solidMolecular Dynamics Simulation01 natural scienceslaw.inventionMolecular dynamicsComplementary experimentslawGeneral Materials ScienceSpectroscopyComputingMilieux_MISCELLANEOUSPhysicsCondensed matter physics010405 organic chemistrySpectrum AnalysisDynamics (mechanics)021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesChemistry13. Climate actionChemical physicsDensity functional theory[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Scanning tunneling microscope0210 nano-technologySum frequency generation spectroscopy
researchProduct